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Investigation of the Pu-U phase diagram 
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Abstract 

The Pu-U phase diagram was investigated by differential thermal analysis. The transition temperatures for solid 
phases were consistent with the widely accepted diagrams. However, a very narrow solidus-liquidus gap was 
found in the present work. The obtained data for the solidus and liquidus temperatures were well reproduced 
in the thermodynamic analysis. 

1. Introduction 

Understanding the Pu-U binary alloy phase diagram 
is  important in investigating metallic fuel behaviour. 
At present the phase diagram for this system by Peterson 
and Foltyn [1] is widely accepted as being correct. It 
is mainly based on thermal, dilatometric, metallographic 
and X-ray diffraction data from Ellinger et al. in 1959 
[2]. Recently, thermodynamic modelling of the Pu-U 
alloy was performed by Leibowitz et al. [3,4] and Ogawa 
[5]. The solidus and liquidus curves reported by Ellinger 
et al. could not be reproduced with their models. The 
calculated solidus and liquidus curves from the estab- 
lished thermodynamic data for pure U and Pu resulted 
in a significantly narrower solidus-liquidus gap than 
the experimental gap. In the present work, differential 
thermal analysis (DTA) was performed and the data 
were analysed by the Gibbs free energy minimizer code 
ChemSage [6] to investigate the above discrepancy. 

2. Experimental details 

The DTA measurements were carried out using a 
model DT7000RH (Sinku Rikou Corp.) analyser as 
described in the work on Pu-Zr binary system [7]. The 
Pu-U alloys of seven compositions, 11, 20, 42, 61, 70, 
78 and 89 at.% U, were prepared by direct melting of 
pure Pu and U metal chips in a Y203 cell (0.5 mm 
in wall thickness) in the DTA apparatus. Characteri- 
zation of the Pu and U metals used is described 
elsewhere [7, 8]. Alloying was monitored by DTA. For 
the purpose of comparison, a sample of 80 at.% U 
alloy, which had been vacuum melted in a graphite 
crucible and characterized in Harwell Laboratory, was 
also used. In the measurements, the samples were kept 

at a slightly lower temperature than each transition 
point in order to achieve thermal equilibrium and then 
heated at a rate of 5 or 10 K min -~. The above 
procedure was repeated several times until a repro- 
ducible transition temperature was obtained. Sample 
preparations and the DTA measurements were per- 
formed in highly purified argon gas [9]. 

3. Results 

Transition points obtained from the DTA measure- 
ments are superimposed on the diagram by Peterson 
and Foltyn [1] in Fig. 1. The data for the 80 at.% U 
alloy (Harwell Laboratory) were similar to those for 
the 78 at.% U alloy prepared in the present work. The 
outline of the Pu-U system from the present DTA 
measurements is similar to the previously reported 
diagram. For instance, the obtained solidus at 11 at.% 
U is 892 K, which corresponds well to the minimum 
of the solidus in the vicinity of 12 at.% U by Peterson 
and Foltyn [1]. Differences were observed in solidus 
and liquidus temperatures for alloys with more than 
20 at.% U; the solidus temperatures were slightly higher, 
while the liquidus curve was lower by 30 K or more. 

4. Discussion 

A significantly narrower solidus-liquidus gap com- 
pared with the published diagram [1] is noticeable, as 
shown in Fig. 1. The solidus-liquidus gap in this work 
is also slightly narrower than that reported by Mound 
Laboratory [10]. The magnitude of our solidus-liquidus 
gap was comparable with the gap calculated by Leibowitz 
et al. [3] and Ogawa [5], although the measured solidus 
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Fig. 1. The transition points for the Pu-U system. Data for the samples made by direct melting in the present work (O) and vacuum 
melting at Harwell Laboratory ( i )  are shown. 

and liquidus exhibited poor agreement with their cal- 
culated curves. 

The obtained solidus and liquidus were thermo- 
dynamically analysed by the Gibbs free energy minimizer 
code, ChemSage [6], to elucidate the above discussion. 
In this code, some thermodynamic models are prepared 
to handle a non-ideal solution. In this work, a model 
in which the free energy AGmL, of mixing is expressed 
by the following Redlich-Kister-Muggianu type formula 
was used. 

m 

AGmix =X(1 - X ) ~ A i ( 1 - 2 X )  '-1 
i ~ l  

, + R T [ X I n X - ( 1 - X )  I n ( l - X ) ]  (1) 

where X is the atomic fraction of uranium, A is an 
interaction parameter defined as A I = H i - S I T  and m 
is the order of the interaction. The following recom- 
mended values of AG (J mol -  1) summarized by Oetting 
et al. [11] were used in the present calculation as well 
as values by Leibowitz et al. [3]: 

AG(Pu, e ) liquid) 

= - 3290.2 + 49.261T- 6.7T In T (2) 

AG(U, 3' , liquid) 

= - 5437.6 + 79.111T- 10.4T In T (3) 

In the calculation of the solidus and liquidus, ideality 
in the solid state (b.c.c. phase) and regularity and first- 
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Fig. 2. The calculated solidus and liquidus curves for the Pu-U 
system by the ChemSage code. The experimental data from Fig. 
1 are also shown: O, r-I, solidus; @, II, liquidus. 

order interaction in the liquid state were at first assumed 
taking account of a speculation by Chiotti et al. [12] 
using data for the Pu-Mg system. The excess free energy 
AG E of mixing is then written as follows: 

AGEsol. = 0 (4) 
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AGE,,q---- X(1 +H20 - 2X)] (5) 

Thus, solidus and liquidus curves are determined by 
two parameters/-/1 and H2 in this model. 

Calculated solidus and liquidus curves using the values 
/-/1 = - 3000 J mol- ~ and H 2 = 100 J mol-  ~ are in good 
agreement with the experimental data shown in Fig. 
2. Leibowitz et al. [3] suggested from their thermo- 
dynamic modelling that either the solidus given by 
Ellinger et al. should be modified or the enthalpy of 
fusion of pure U is higher than the value recommended 
by the International Atomic Energy Agency. Our anal- 
ysis implies that the former suggestion is probably true. 

5. Conclusion 

As the result of the DTA measurements of the Pu-U 
alloys, a diagram similar to that given by Peterson and 
Foltyn [1] was established, except for the magnitude 
of the solidus-liquidus gap. The gap determined in the 
present work was considerably narrower than in pre- 
viously reported values. The obtained solidus and li- 
quidus temperatures were well reproduced by ther- 
modynamic calculations using the recommended 
thermodynamic data of pure Pu and U. The present 
analysis suggests that the published solidus and liquidus 
should be modified. 
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